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Topics to be covered

1. The inverse problem of deconvolution (image restoration)

2. Motivation for studying the discrete Fourier transform in 2+D

3. Review of the 1D Fourier transform

4. The discrete Fourier transform

5. Introduction to the 2D FT

6. The fast Fourier transform (self study)
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Reading

1. Gonzalez and Woods pp. 147-157.

Self-study: The fast Fourier transform

1. Gonzalez and Woods pp. 208-213.

Refresher material

1. Continuous time Fourier transform: Oppenheim and Willsky

with Young (1983), pp. 190-214, 223-225

2. Discrete time Fourier transform: Oppenheim & Schafer, pp.

40-65.

3. Sampling: Oppenheim & Schafer, pp. 140-153.
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2D linear shift invariant systems

f [m,n] g[m,n]h[m,n]

Inverse problem: We have an image g and know what h is and

want to find f . This is image restoration.
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Example I: Correcting myopia (short sightedness)

Axis F1

F2

The optometrist measures h using instruments and makes a lens

which modifies the combined point spead function (PSF) so that

the image is focussed on the retina.

Axis F1

F2

Exercise: Draw in the type of lens used.
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Example II: Correcting the Hubble Space Telescope

The main mirror of the Hubble space telscope was incorrectly designed.

This imaging system should have had a PSF as close to a single impulse

as possible (i.e., no point spread). This was not the case and the first

images were very disappointing.

Photo courtesy of the Space Telescope Science Institute
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Example II: Correcting the Hubble Space Telescope

To make the PSF (h) better approximate an impulse, five space walks

were conducted during a single shuttle flight. Corrective mirrors were

added to make the Hubble images crisp. The corrective system’s transfer

function was designed to be the inverse of that of the mirror defect.

Photo courtesy of the Space Telescope Science Institute
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Digital image restoration

Assume h[m,n] is the blurring PSF:

f [m,n] g[m,n]h[m,n]

We try to find an approximation to the inverse of this function

ĥ−1[m,n]. If we feed the blurred image through the inverse system,

we get f̂ [m,n]. This image is an approximation of the true image

f [m,n].

g[m,n] f̂ [m,n]ĥ−1[m,n]

This inverse operation is called deconvolution.
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Hubble example continued

Right now, inside the Hubble telescope, the corrective mirrors are

convolving the blurred image g(x, y) with a PSF ĥ−1(x, y) to

produce f̂(x, y), a good approximation to the desired image f(x, y).
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2D deconvolution as a matrix operation
Recall the example from Lecture 2:

g =









g0

g1

g2









=









H0 0

H1 H0

0 H1









, Hf

Deconvolution can be performed if we can find a suitable

approximation to the inverse of H:

f̂ = Ĥ−1g

Since this is equivalent to solving a set of simultaneous linear equations,

why can’t we just use the normal matrix inverse H−1?

If f [m, n] is a 512× 512 image, estimate the size of H

How much memory do we need to store H if one double precision

floating point number requires 8 bytes?
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Motivation for studying the mutidimensional FT

1. As is the case for signals in 1D, the frequency spectra of images

reveal important properties of images and the systems that

created them.

2. Many topics in this course center around the linear inverse

problem:

f̂ = Ĥ−1g

We will find that the FT (via the convolution theorem) enables

us to perform deconvolution and filtering of large images in a

computationally feasible way.
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The discrete Fourier transform (DFT)

Forward transform (analysis):

G[k] =







∑N−1
n=0 g[n]e−2πkn/N , 0 ≤ k ≤ N − 1,

0 otherwise

Inverse transform (synthesis):

g[n] =







1
N

∑N−1
k=0 G[k] e 2πkn/N , 0 ≤ n ≤ N − 1,

0 otherwise
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Fourier transform: There is only one.

It is called different names, and different notation is used,

depending on the nature of the signal to which it is applied.

Real space Real space Frequency Spectrum Type of FT

axis function axis

continuous aperiodic continuous aperiodic Fourier transform

continuous periodic continuous discrete Fourier series

discrete aperiodic continuous countinuous, Discrete space Fourier

periodic transform (DSFT)

discrete periodic discrete periodic Discrete Fourier

transform (DFT)

Note: Only the DFT is suitable for direct implementation on a

computer because both the input and output are discrete arrays.

However, any signal analyzed by the DFT is implicitly

assumed to be periodic.
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Forward 1D DFT: Example
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DFT assumes we are giving it a single period of a periodic

function

−3 −2 −1 0 1 2 3
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

cos(2 π 0.5 x)  sampled
at  8 cycles/meter       

x (meters)

Original signal
Sampled signal 

The signal shown here is the signal that is actually analyzed by the

DFT.
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Forward 1D DFT: Example

The 1D DFT takes a vector on size N (16 in this case) as input:

Samples of cos(2π2t) :
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Forward 1D DFT: Example

And returns a vector on size N (16 in this case) as output:

DFT of vector of samples:













































































0.00

8.00 + 0.01i

−0.00 − 0.00i

−0.00 − 0.00i

−0.00 − 0.00i

−0.00 − 0.00i

−0.00 − 0.00i

−0.00 − 0.00i

−0.00

−0.00 + 0.00i

−0.00 + 0.00i

−0.00 + 0.00i

−0.00 + 0.00i

−0.00 + 0.00i

−0.00 + 0.00i

8.00 − 0.01i












































































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Axis of the DFT

We sampled the continuous cosine signal 8 times over 1 meter.

Thus our sampling frequency is:

fs = 8 cycles / m

The input vector had N = 16 samples. This means that the output

vector will also have N = 16 samples.

To what frequency does each element correspond?
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Axis of the DFT

Element number frequency (cycles/m)

0 0× fs/N = 0× 8/16 = 0

1 1× fs/N = 1× 8/16 = 0.5

2 2× fs/N = 2× 8/16 = 1
...

...

7 7× fs/N = 7× 8/16 = 3.5

8 8× fs/N − fs = 8× 8/16− 8 = −4

9 9× fs/N − fs = 9× 8/16− 8 = −3.5
...

...

14 14× fs/N − fs = 14× 8/16− 8 = −1

15 15× fs/N − fs = 15× 8/16− 8 = −0.5
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DFT algorithms return a specific single period of the DFT

−5 0 5 10 15 20
0

2

4

6

8

10

frequency (cycles / meter)

The DFT is periodic

Specific period of DFT   
returned in output vector

Frequency spectra are normally viewed with zero frequency at the center of the

plot. This is why we place the DFT samples for frequencies ≥ fs to the left of

sample 0.
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Forward 1D DFT: Example of DFT: Non-integral number

of periods
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Why do we have so many non-zero peaks in the spectrum?
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Answer: DFT assumes we want to transform this:

−2 −1 0 1 2 3 4
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Signal the DFT thinks 
you want analyzed     

x (meters)

The implicit discontinuity introduces other components into the

spectrum.
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Where does this periodicity come from?

Review 1D continuous space Fourier transform

Forward transform: (analysis)

F (ω) =

∫ ∞

−∞

f(x) e− ωxdx

Inverse transform: (synthesis)

f(x) =
1

2π

∫ ∞

−∞

F (ω) e  ωxdω
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An continuous space signal with limited support has a

continuous FT with infinite support.

Example:

 0  
 

 

A

−X/2 X/2

A rect(x/X)

x
 0  

 0

AX

−2π/X 2π/X

AX sinc(ωX / 2π)

ω
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sinc and rect

Recall:

sinc(x) ,
sin(πx)

πx

rect

(

x

X

)

=







1, |x| < X/2

0, |x| > X/2
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A continuous signal that is periodic in space has a discrete

FT with finite support.

Example:
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Duality and sampling

Duality: If we have a Fourier transform pair:

g(x)­ f(ω)

Then we may find the transform of f(x) as follows:

f(x)­ 2πg(−ω)

Because of the duality between real space and Fourier space, if a

periodic real space signal has a discrete FT, a discrete real

space signal must have a periodic FT. Consequently, if we

sample a signal, we expect its FT to be periodic.
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Recall

1. A comb of impulses in real space separated by a distance X

transforms to a comb of impulses in frequency space separated

by 2π/X:

∞
∑

k=−∞

δ(x− kX)­

∞
∑

k=−∞

δ(ω − k 2π/X)

2. The convolution property tells us that:

f(x) ∗ h(x)­ F (ω)H(ω)

3. The modulation property:

f(x)h(x)­
1

2π

(

F (ω) ∗H(ω)
)

Note how (2) can be derived from (3) and vice versa using the

duality property.
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Sampling a continuous space signal

Consider sampling a signal f(x) at a sampling interval of X:

fs(x) =

∞
∑

k=−∞

δ(x− kX)f(x)

Taking the Fourier transform (using the convolution property)

gives:

Fs(ω) =
2π

X

∞
∑

k=−∞

δ(ω − k 2π/X) ∗ F (ω)

We may now use the “rubber stamp” method to visualize the

spectrum of Fs(ω).
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Example spectrum of a sampled signal

30

After sampling

In the real world, continuous signals or images are converted to

arrays of numbers using an analog-to-digital (A/D) converter.

• When we plot a sample of a signal on a continuous axis, we

represent the sample using a Dirac delta distribution.

• When we plot a signal on a discrete space, we represent the

sample using a Kronecker delta (unit sample).
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Representation of samples
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Dirac delta distribution (unit impulse)

x (continuous)
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1

Kronecker delta (unit sample)

n (discrete)
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The discrete space Fourier transform (DSFT)

The DSFT is the Fourier transform of a sampled signal. It is, in

general, continuous. The DSFT of a signal is given by:

F (e ω) =

∞
∑

n=−∞

f [n]e−ωn

1. The DSFT axis is normalized in frequency. If a continuous

signal is sampled at a sampling frequency ω = 2π/X, this

frequency is mapped to 2π on the e ω axis.

2. We saw earlier that the FT of a sampled signal is periodic and

repeats every 2π/X. The DSFT is normalized with respect to

sampling frequncy and has a period of 2π.
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DSFT transform pair example

sinωcn

πn
­ X(e ω) =







1, |ω| < ωc

0, ωc < |ω| ≤ π

−20 −10 0 10 20
−0.2

0

0.2

0.4

0.6

0.8

1

sin(ω
c
n)/πn

n (discrete)
 0  

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

−π π−ω
c

ω
c

DSFT (one period shown)

exp(jω) (continuous)
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DFT: Sampling the DSFT

• The DFT coefficients G[k] are samples of a single period of the

DSFT. We know, however, that when we sample a signal in one

domain, its transform in the other domain is periodic.

• The DFT provides a practical method of finding the samples of

the DSFT from the samples of a signal and vice versa.

• We “pay” for this convenience by having to accept the

assumption of periodicity.
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DFTs of aperiodic signals: Windowing

• Whenever possible, try to take a DFT of an entire period of

the input signal.

• If the input signal is aperiodic, choose a segment of the signal

such that the first value and last value are similar. This

reduces edge discontinuities.

• Often, the input signal is multiplied by a window function that

slowly tapers the edges of the signal down towards zero.
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Common windowing functions

rectangular (implicitly assumed by DFT):

w[n] =







1, 0 ≤ n ≤ N

0, otherwise

von Hahn window:

w[n] =







(0.5− 0.5 cos(2πn/N)), 0 ≤ n ≤ N

0, otherwise

Hamming window:

w[n] =







(0.54− 0.46 cos(2πn/N)), 0 ≤ n ≤ N

0, otherwise
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Plots of windowing functions
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Windowed DFT: Example of DFT: Non-integral number

of periods
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Windowing reduces the spectral contamination due to edge discontinuities
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This is what the spectrum looked like before:
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This time the DFT transformed this:

−2 −1 0 1 2 3 4
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Signal the DFT thinks 
you want analyzed     

x (meters)

With this signal (because it is periodic), a better approach would

have been to choose an integral number of periods and use a

rectangular window.
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The 2D continuous space Fourier transform

Forward transform: (analysis)

F (w1, w2) =

∫ ∞

−∞

∫ ∞

−∞

f(x1, x2) e
−(w1x1+w2x2)dx1dx2

Inverse transform: (synthesis)

f(x1, x2) =
1

2π

∫ ∞

−∞

F (ω1, ω2) e
(ω1x1+ω2x2)dω1dω2
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The multidimensional continuous space Fourier transform

Forward transform: (analysis)

F (ω) =

∫

<n

f(x) e−ω·xdx

Inverse transform: (synthesis)

f(x) = (2π)−n
∫

<n

F (ω) e ω·xdω
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The 2D continuous space Fourier transform: Notation

issues

Most image processing texts give Fourier transform pairs for

conventional rather than angular frequency. Gonzalez and Woods

uses x , x1, y , x2, u for horizontal frequency and v for vertical

frequency.

Forward transform: (analysis)

F (u, v) =

∫ ∞

−∞

∫ ∞

−∞

f(x, y) e− 2π(ux+vy)dxdy

Inverse transform: (synthesis)

f(x, y) =

∫ ∞

−∞

F (u, v) e  2π(ux+vy)dxdy
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Example 2D FT pair

cos(2πu0x+ 2πv0y)­
1

2

[

δ(u− u0, v − v0) + δ(u+ u0, v + v0)
]
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2D FT
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